Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies.

نویسندگان

  • S C Leahy
  • W J Kelly
  • R S Ronimus
  • N Wedlock
  • E Altermann
  • G T Attwood
چکیده

Ruminant-derived methane (CH4), a potent greenhouse gas, is a consequence of microbial fermentation in the digestive tract of livestock. Development of mitigation strategies to reduce CH4 emissions from farmed animals is currently the subject of both scientific and environmental interest. Methanogens are the sole producers of ruminant CH4, and therefore CH4 abatement strategies can either target the methanogens themselves or target the other members of the rumen microbial community that produce substrates necessary for methanogenesis. Understanding the relationship that methanogens have with other rumen microbes is crucial when considering CH4 mitigation strategies for ruminant livestock. Genome sequencing of rumen microbes is an important tool to improve our knowledge of the processes that underpin those relationships. Currently, several rumen bacterial and archaeal genome projects are either complete or underway. Genome sequencing is providing information directly applicable to CH4 mitigation strategies based on vaccine and small molecule inhibitor approaches. In addition, genome sequencing is contributing information relevant to other CH4 mitigation strategies. These include the selection and breeding of low CH4-emitting animals through the interpretation of large-scale DNA and RNA sequencing studies and the modification of other microbial groups within the rumen, thereby changing the dynamics of microbial fermentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Genome Sequence of Methanogenic Archaeon ISO4-G1, a Member of the Methanomassiliicoccales, Isolated from a Sheep Rumen

Methanogenic archaeon ISO4-G1 is a methylotrophic methanogen belonging to the orderMethanomassiliicoccalesthat was isolated from a sheep rumen. Its genome has been sequenced to provide information on the genetic diversity of rumen methanogens in order to develop technologies for ruminant methane mitigation.

متن کامل

The complete genome sequence of Eubacterium limosum SA11, a metabolically versatile rumen acetogen

Acetogens are a specialized group of anaerobic bacteria able to produce acetate from CO2 and H2 via the Wood-Ljungdahl pathway. In some gut environments acetogens can compete with methanogens for H2, and as a result rumen acetogens are of interest in the development of microbial approaches for methane mitigation. The acetogen Eubacterium limosum SA11 was isolated from the rumen of a New Zealand...

متن کامل

The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1

Methanosarcina species are the most metabolically versatile of the methanogenic Archaea and can obtain energy for growth by producing methane via the hydrogenotrophic, acetoclastic or methylotrophic pathways. Methanosarcina barkeri CM1 was isolated from the rumen of a New Zealand Friesian cow grazing a ryegrass/clover pasture, and its genome has been sequenced to provide information on the phyl...

متن کامل

Methanogens: Methane Producers of the Rumen and Mitigation Strategies

Methanogens are the only known microorganisms capable of methane production, making them of interest when investigating methane abatement strategies. A number of experiments have been conducted to study the methanogen population in the rumen of cattle and sheep, as well as the relationship that methanogens have with other microorganisms. The rumen methanogen species differ depending on diet and...

متن کامل

RIM-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments

Methane is formed by methanogenic archaea in the rumen as one of the end products of feed fermentation in the ruminant digestive tract. To develop strategies to mitigate anthropogenic methane emissions due to ruminant farming, and to understand rumen microbial differences in animal feed conversion efficiency, it is essential that methanogens can be identified and taxonomically classified with h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Animal : an international journal of animal bioscience

دوره 7 Suppl 2  شماره 

صفحات  -

تاریخ انتشار 2013